Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Recent advances in materials and manufacturing processes have allowed the fabrication of intricate implant surfaces to facilitate bony attachment. However, refinement and evaluation of these new design strategies are hindered by the cost and complications of animal studies, particularly during early iterations in the development process. To address this problem, we have previously constructed and validated an ex-vivo bone bioreactor culture system that can maintain the viability of bone samples for an extended period ex-vivo. In this study, we investigated the mineralization of a titanium wire mesh scaffold under both static and dynamic culturing using our ex vivo bioreactor system. Thirty-six cancellous bone cores were harvested from bovine metatarsals at the time of slaughter and divided into five groups under the following conditions: Group 1) Isolated bone cores placed in static culture, Group 2) Unloaded bone cores placed in static culture in contact with a fiber-mesh metallic scaffold, Group 3) Bone cores placed in contact with a fiber-mesh metallic scaffold under the constant pressure of 150 kPa, Group 4) Bone core placed in contact with a fiber-mesh metallic scaffold and exposed to cyclic loading with continuous perfusion flow of media within the ex-vivo culture system and Group 5) Bone core evaluated on Day 0 to serve as a positive control for comparison with all other groups at weeks 4 and 7. Bone samples within Groups 1–4 were incubated for 4 and 7 weeks and then evaluated using histological examination (H&E) and the Live-Dead assay (Life Technologies). Matrix deposits on the metallic scaffolds were examined with scanning electron microscopy (SEM), while the chemical composition of the matrix was measured using energy-dispersive x-ray spectroscopy (EDX). We found that the viability of bone cores was maintained after seven weeks of loading in our ex vivo system. In addition, SEM images revealed crystallite-like structures on the dynamically loaded metal coupons (Group 4), corresponding to the initial stages of mineralization. EDX results further confirmed the presence of carbon at the interface and calcium phosphates in the matrix. We conclude that a bone bioreactor can be used as an alternate tool for in-vivo bone ingrowth studies of new implant surfaces or coatings.more » « less
-
Abstract High‐resolution mass spectrometry (HRMS) has become a vital tool for dissolved organic matter (DOM) characterization. The upward trend in HRMS analysis of DOM presents challenges in data comparison and interpretation among laboratories operating instruments with differing performance and user operating conditions. It is therefore essential that the community establishes metric ranges and compositional trends for data comparison with reference samples so that data can be robustly compared among research groups. To this end, four identically prepared DOM samples were each measured by 16 laboratories, using 17 commercially purchased instruments, using positive‐ion and negative‐ion mode electrospray ionization (ESI) HRMS analyses. The instruments identified ~1000 common ions in both negative‐ and positive‐ion modes over a wide range ofm/zvalues and chemical space, as determined by van Krevelen diagrams. Calculated metrics of abundance‐weighted average indices (H/C, O/C, aromaticity, andm/z) of the commonly detected ions showed that hydrogen saturation and aromaticity were consistent for each reference sample across the instruments, while average mass and oxygenation were more affected by differences in instrument type and settings. In this paper we present 32 metric values for future benchmarking. The metric values were obtained for the four different parameters from four samples in two ionization modes and can be used in future work to evaluate the performance of HRMS instruments.more » « less
An official website of the United States government
